DESCRIPTION
The TS3V912 is a RAIL TO RAIL CMOS dual operational amplifier designed to operate with a single 3V supply voltage. The input voltage range V_{icm} includes the two supply rails V_{CC}^+ and V_{CC}^-. The output reaches:
- $V_{CC}^- +40mV$ to $V_{CC}^+ -50mV$ with $R_L = 10k\Omega$
- $V_{CC}^- +350mV$ to $V_{CC}^+ -350mV$ with $R_L = 600\Omega$
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200μA/amp. ($V_{CC} = 3V$).
Source and sink output current capability is typically 40mA (at $V_{CC} = 3V$), fixed by an internal limitation circuit.
SGS-THOMSON is offering a quad op-amp with the same features: TS3V914.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply Voltage - (note 1)</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>V_{id}</td>
<td>Differential Input Voltage - (note 2)</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>V_i</td>
<td>Input Voltage - (note 3)</td>
<td>-0.3 to 18</td>
<td>V</td>
</tr>
<tr>
<td>I_{in}</td>
<td>Current on Inputs</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>I_o</td>
<td>Current on Outputs</td>
<td>±130</td>
<td>mA</td>
</tr>
<tr>
<td>T_{oper}</td>
<td>Operating Free Air Temperature Range</td>
<td>TS3V912I/AI/B1</td>
<td>-40 to +125</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC +0.3V.

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply Voltage</td>
<td>2.7 to 16</td>
<td>V</td>
</tr>
<tr>
<td>V_{icm}</td>
<td>Common Mode Input Voltage Range</td>
<td>VCC -0.2 to VCC +0.2</td>
<td>V</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

$V_{CC^+} = 3V, V_{CC^-} = 0V, R_L, C_L$ connected to $V_{CC}/2$, $T_{amb} = 25^\circ C$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>TS3V912/AI/B1</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input Offset Voltage ($V_{ic} = V_o = V_{CC}/2$)</td>
<td>TS3V912</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>TS3V912A</td>
<td>TS3V912B</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS3V912A</td>
<td>TS3V912B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI_o</td>
<td>Input Offset Voltage Drift</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>$\mu V/^\circ C$</td>
</tr>
<tr>
<td>I_i</td>
<td>Input Offset Current - (note 1)</td>
<td></td>
<td>1</td>
<td>100</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_b</td>
<td>Input Bias Current - (note 1)</td>
<td></td>
<td>1</td>
<td>150</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply Current (per amplifier, $A_{VCL} = 1$, no load)</td>
<td></td>
<td>200</td>
<td>300</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$T_{min} \leq T_{amb} \leq T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMR</td>
<td>Common Mode Rejection Ratio $V_{ic} = 0$ to 3V, $V_o = 1.5V$</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SVR</td>
<td>Supply Voltage Rejection Ratio ($V_{CC^+} = 2.7$ to 3.3V, $V_O = V_{CC}/2$)</td>
<td></td>
<td>50</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>A_{vd}</td>
<td>Large Signal Voltage Gain ($R_L = 10k\Omega, V_O = 1.2V$ to 1.8V)</td>
<td></td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>V/mV</td>
</tr>
<tr>
<td></td>
<td>$T_{min} \leq T_{amb} \leq T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High Level Output Voltage ($V_{id} = 1V$)</td>
<td>$R_L = 100k\Omega$</td>
<td>2.95</td>
<td>2.3</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>$R_L = 10k\Omega$</td>
<td>2.9</td>
<td>2.3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 600k\Omega$</td>
<td>2.8</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Level Output Voltage ($V_{id} = -1V$)</td>
<td>$R_L = 100k\Omega$</td>
<td>30</td>
<td>50</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>$R_L = 10k\Omega$</td>
<td>300</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 600k\Omega$</td>
<td>900</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_o</td>
<td>Output Short Circuit Current ($V_{id} = \pm 1V$)</td>
<td>Source ($V_o = V_{CC^-}$)</td>
<td>20</td>
<td>40</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sink ($V_o = V_{CC^+}$)</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>Gain Bandwidth Product ($A_{VCL} = 100$, $R_L = 10k\Omega$, $C_L = 100pF$, $f = 100kHz$)</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>SR*</td>
<td>Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 1.3V$ to 1.7V)</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V/μs</td>
</tr>
<tr>
<td>SR*</td>
<td>Slew Rate ($A_{VCL} = 1$, $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 1.3V$ to 1.7V)</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td>V/μs</td>
</tr>
<tr>
<td>Φ_m</td>
<td>Phase Margin</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>Degrees</td>
</tr>
<tr>
<td>e_n</td>
<td>Equivalent Input Noise Voltage ($R_s = 100\Omega$, $f = 1kHz$)</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>V_{O1}/V_{O2}</td>
<td>Channel Separation ($f = 1kHz$)</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 1: Maximum values including unavoidable inaccuracies of the industrial test.
ELECTRICAL CHARACTERISTICS

\(V_{CC}^* = 5\text{V}, V_{CC}^- = 0\text{V}, R_L, C_L \) connected to \(V_{CC}/2 \), \(T_{amb} = 25^\circ\text{C} \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TS3V912/AI/B1</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{io})</td>
<td>Input Offset Voltage ((V_{ic} = V_{o} = V_{CC}/2))</td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
<td>(\begin{array}{c</td>
</tr>
<tr>
<td>(D V_{io})</td>
<td>Input Offset Voltage Drift</td>
<td></td>
<td>(\leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(I_{io})</td>
<td>Input Offset Current - (note 1)</td>
<td></td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(I_b)</td>
<td>Input Bias Current - (note 1)</td>
<td></td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply Current (per amplifier, (A_{VCL} = 1), no load)</td>
<td></td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>CMR</td>
<td>Common Mode Rejection Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR</td>
<td>Supply Voltage Rejection Ratio ((V_{CC}^* = 3 \text{ to } 5\text{V}, V_O = V_{CC}/2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{vd})</td>
<td>Large Signal Voltage Gain ((R_L = 10\text{kΩ}, V_O = 1.5\text{V to } 3.5\text{V}))</td>
<td></td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High Level Output Voltage ((V_{id} = 1\text{V}))</td>
<td>(R_L = 100\text{kΩ})</td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage ((V_{id} = -1\text{V}))</td>
<td>(R_L = 100\text{kΩ})</td>
<td>(T_{min.} \leq T_{amb} \leq T_{max.})</td>
</tr>
<tr>
<td>(I_o)</td>
<td>Output Short Circuit Current ((V_{id} = \pm1\text{V}))</td>
<td>Source ((V_O = V_{CC}^-))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sink ((V_O = V_{CC}^+))</td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>Gain Bandwidth Product ((A_{VCL} = 100, R_L = 10\text{kΩ}, C_L = 100\text{pF}, f = 100\text{kHz}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SR^*)</td>
<td>Slew Rate ((A_{VCL} = 1, R_L = 10\text{kΩ}, C_L = 100\text{pF}, V_i = 1\text{V to } 4\text{V}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SR')</td>
<td>Slew Rate ((A_{VCL} = 1, R_L = 10\text{kΩ}, C_L = 100\text{pF}, V_i = 1\text{V to } 4\text{V}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_n)</td>
<td>Equivalent Input Noise Voltage ((R_s = 100\Omega, f = 1\text{kHz}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{O1}/V_{O2})</td>
<td>Channel Separation ((f = 1\text{kHz}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Phase Margin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Maximum values including unavoidable inaccuracies of the industrial test.
TYPICAL CHARACTERISTICS

Figure 1: Supply Current (each amplifier) versus Supply Voltage

- $T_{amb} = 25^\circ C$
- $V_{CC} = 1 V$
- $V_0 = V_{CC} / 2$

Figure 2: Input Bias Current versus Temperature

- $V_{CC} = 10 V$
- $V_i = 5 V$
- No load

Figure 3a: High Level Output Voltage versus High Level Output Current

- $T_{amb} = 25^\circ C$
- $V_{CC} = 5 V$
- $V_i = 3 V$

Figure 3b: High Level Output Voltage versus High Level Output Current

- $T_{amb} = 25^\circ C$
- $V_{CC} = +16 V$
- $V_i = +10 V$

Figure 4a: Low Level Output Voltage versus Low Level Output Current

- $T_{amb} = 25^\circ C$
- $V_{CC} = 5 V$
- $V_i = +3 V$

Figure 4b: Low Level Output Voltage versus Low Level Output Current

- $T_{amb} = 25^\circ C$
- $V_{CC} = 16 V$
- $V_i = 10 V$
Figure 8: Input Voltage Noise versus Frequency

ORDERING INFORMATION

TS3V912
Standard Linear Ics Macromodels, 1993.

CONNECTIONS:

1. INVERTING INPUT
2. NON-INVERTING INPUT
3. OUTPUT
4. POSITIVE POWER SUPPLY
5. NEGATIVE POWER SUPPLY

.DEVICE TS3V912_3 1 3 2 4 5 (analog)

.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F

* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 1 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 1.271505E+01
DIP 11 12 MDTH 400E-12

* AMPLIFYING STAGE
FIP 5 19 VOFP 2.750000E+02
FIN 5 19 VOFN 2.750000E+02
RG1 19 5 1.916825E+05
RG2 19 4 1.916825E+05
CC 19 29 2.200000E-08

INPUT STAGE

CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 1 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 1.271505E+01
DIP 11 12 MDTH 400E-12

AMPLIFYING STAGE

FIP 5 19 VOFP 2.750000E+02
FIN 5 19 VOFN 2.750000E+02
RG1 19 5 1.916825E+05
RG2 19 4 1.916825E+05
CC 19 29 2.200000E-08

ELECTRICAL CHARACTERISTICS \(V_{CC}^+ = 3V, V_{CC}^- = 0V, R_L, C_L \) connected to \(V_{CC}/2 \), \(T_{amb} = 25^\circ C \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{io})</td>
<td>No load, per operator</td>
<td>0</td>
<td>mV</td>
</tr>
<tr>
<td>(A_{vd})</td>
<td>(R_L = 10k\Omega)</td>
<td>10</td>
<td>V/mV</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>No load, per operator</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td>(V_{cm})</td>
<td>-0.2 to 3.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>(R_L = 10k\Omega)</td>
<td>2.96</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>(R_L = 10k\Omega)</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>(I_{sink})</td>
<td>(V_O = 3V)</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{source})</td>
<td>(V_O = 0)</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>GBP</td>
<td>(R_L = 10k\Omega, C_L = 100pF)</td>
<td>0.8</td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>(R_L = 10k\Omega, C_L = 100pF)</td>
<td>0.3</td>
<td>V/μs</td>
</tr>
</tbody>
</table>
Applies to: TS3V912 (V\text{CC} = 5V)

** Standard Linear Ics Macromodels, 1993.

** CONNECTIONS:
- 1 INVERTING INPUT
- 2 NON-INVERTING INPUT
- 3 OUTPUT
- 4 POSITIVE POWER SUPPLY
- 5 NEGATIVE POWER SUPPLY
- 6 STANDBY

MACROMODELS

```
.SUBCKT TS3V912_5_1 3 2 4 5 (analog)
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
** INPUT STAGE**
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 S
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
FIN 17 5 0.000000E+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E-00
FCN 5 4 VOFN 5.750000E-00
ISTB0 5 4 500N
** AMPLIFYING STAGE**
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904861E+05
RG2 19 4 4.904861E+05

** ELEETRICAL CHARACTERISTICS ** V\text{CC}^+ = 5V, V\text{CC}^- = 0V, R_L, C_L connected to V\text{CC}/2, T_{amb} = 25^\circ C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{io}</td>
<td>0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>A_{vd}</td>
<td>R_L = 10kΩ</td>
<td>50</td>
<td>V/mV</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>No load, per operator</td>
<td>230</td>
<td>μA</td>
</tr>
<tr>
<td>V_{cm}</td>
<td>-0.2 to 5.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>R_L = 10kΩ</td>
<td>4.95</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>R_L = 10kΩ</td>
<td>40</td>
<td>mV</td>
</tr>
<tr>
<td>I_{sink}</td>
<td>V_O = 5V</td>
<td>65</td>
<td>mA</td>
</tr>
<tr>
<td>I_{source}</td>
<td>V_O = 0V</td>
<td>65</td>
<td>mA</td>
</tr>
<tr>
<td>GBP</td>
<td>R_L = 10kΩ, C_L = 100pF</td>
<td>1</td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>R_L = 10kΩ, C_L = 100pF</td>
<td>0.8</td>
<td>V/μs</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Millimeters</td>
<td>Inches</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3.32</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>0.51</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.15</td>
<td>1.65</td>
<td>0.045</td>
</tr>
<tr>
<td>b</td>
<td>0.356</td>
<td>0.55</td>
<td>0.014</td>
</tr>
<tr>
<td>b1</td>
<td>0.204</td>
<td>0.304</td>
<td>0.008</td>
</tr>
<tr>
<td>D</td>
<td>10.92</td>
<td>0.430</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>7.95</td>
<td>9.75</td>
<td>0.313</td>
</tr>
<tr>
<td>e</td>
<td>2.54</td>
<td></td>
<td>0.100</td>
</tr>
<tr>
<td>e3</td>
<td>7.62</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>e4</td>
<td>7.62</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>6.6</td>
<td></td>
<td>0.260</td>
</tr>
<tr>
<td>i</td>
<td>5.08</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.18</td>
<td>3.81</td>
<td>0.125</td>
</tr>
<tr>
<td>Z</td>
<td>1.52</td>
<td></td>
<td>0.060</td>
</tr>
</tbody>
</table>
**PACKAGE MECHANICAL DATA**

8 PINS - PLASTIC MICROPACKAGE (SO)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>a2</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>b</td>
<td>0.35</td>
<td>0.48</td>
</tr>
<tr>
<td>b1</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>E</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>e3</td>
<td>3.81</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>L</td>
<td>0.4</td>
<td>1.27</td>
</tr>
<tr>
<td>M</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.