
Multiplatform Server-Based Speech Recogniser
Generator for Embedded Systems

Robert Krejčí
1
, Václav Hanžl

2

1Department of Circuit Theory, Electrical Engineering Faculty, Czech Technical University,
Technická 2, 166 27 Praha, Czech Republic

robert.krejci@centrum.cz
2Department of Circuit Theory, Electrical Engineering Faculty, Czech Technical University,

Technická 2, 166 27 Praha, Czech Republic
hanzl@noel.fel.cvut.cz

Abstract – Automatic speech recognisers still more

come in the practice of regular users of computers

and various devices. However, so far there is no

speech recogniser on the market in the form of an

electronic component or a module that could be

easily usable in embedded systems. Our intention

is to prepare a theoretical concept and practical

realisation of a software tool that facilitates the

development of the standalone module of spoken

commands recogniser and enables the easy

configurability during a possible purchase in an e-

shop for each individual part. The first step

towards this goal is our phpHMM software tool

that facilitates the development and optimisation

of speech recogniser algorithms. We use it for

generating source code of speech recogniser using

the PHP scripting language and MySQL database.

The input of the system is a speech model and a list

of words to be recognised. The output is the source

code and data structures in the C programming

language, which are consecutively compiled into an

executable program.

I. INTRODUCTION

 In modern devices increasingly emerges a new
possibility of controlling by voice commands. This
feature can lead to miniaturisation of these devices,
elimination of mechanical components, it improves
comfort of handling and it can have a positive effect
on reliability and price. So far, however, there is no
general electronic component or module for speech
recognition on the market in the sense of commonly
used Bluetooth, WiFi or GSM modules. The main
reason is that speech recognition is computationally
very intensive process, especially if it were an entirely
general speech without defining the field, and
currently there is still not available any computer
technology that would simultaneously meet the task
requirements of embedded systems – high computing
performance, low power, small size, low price.
 However, if we put ourselves a task to create the
speech recogniser with a limited number of
recognised words, as commands for a specific
controlled device, we can get closer to the idea of a
miniature speech recognition module, which has
human speech (command) as input and a text

transcription of this speech as output or possibly even
value of the logic levels on I/O ports of the module.
 To have a good chance of success, it must be
easily configurable even for each individually
produced module. Our idea of configurability is based
on the concept of internet e-shop, where the customer
chooses ordered module parameters, including in
particular the list of words that the module will be
able to recognise. Everything other would then be
done automatically: a speech model and choice of
hardware platform, assembling the source code and
data structures, compilation and generation of
executable file.
 We are currently developing a basis for such
entirely automated system. It is the class of functions,
which we called phpHMM. Due to the possible future
implementation to an internet e-shop, we have chosen
the PHP programming language using a MySQL
database as the base platform of the tool.
 Since at the creation of speech recogniser it is
worked with huge amounts of data, many activities
are performed automatically using scripts to facilitate
the work and eliminate the need for repeated manual
data processing. For this serves e.g. a tool known as
HTK Toolkit [1], using which it can be created a
complete speech recogniser for the PC platform.
 However, when creating a speech recogniser,
which is run on different hardware platforms, as e.g.
digital signal processors, there is no such public tool
available and we have to create own one. In this case
the speech models trained using the HTK toolkit can
be used, but for their treatment totally different
algorithms and optimisation methods must be used
than those used on the PC platform. To test the
optimisation methods there is often necessary to
change the data structures and convert their
parameters. Therefore, in the Speech Processing
Group at the Department of Circuit Theory, CTU in
Prague, a “phpHMM” tool, that facilitates and
integrates the development of speech recognition
algorithms to alternative hardware platforms, is
developed.

II. PhpHMM TOOL

PhpHMM tool is a set of scripts in PHP [2] using
MySQL database [3]. This technology has become

one of the standards to generate web pages, but of
course it can be used for generating also any other
texts, such as source code. The base of the phpHMM
tool is a class of functions that can be easily included
into a superior system. The scripts are run on the
server (either on a local computer configured as a
server or on a publicly accessible web server) and
their output is visible via a graphical user-friendly
web interface. By a sequence of single steps, source
code of speech recogniser can be made. They will be
discussed in the following text.

Speech Model

 The result of training-phase of the speech
recogniser using the HTK is a file in a defined format
that describes a general model of speech, created
based on the utterances of training database. The
models of speech may have a huge number of
different variations, such as type of parametrisation,
the number of states, streams, and mixtures, the
number of coefficients in each mixture, etc. During
recognition, these parameters enter the output
probability density function b(o) [4]:

()[]

()
()

() ()
,

2

1
,;

;,;)(

1

2

1

1 1

jsmstjsm
T

jsmst

s

s
s

oo

n
jsmjsmst

S

s

M

m jsmjsmstjsmtj

eoN

oNcob

µµ

γ

π
µ

µ

−Σ−−

= =

−

Σ
=Σ

Σ=∏ ∑
 (1)

where S is count of streams, γs is stream weight, Ms is

count of mixtures in a stream, cjsm is weight of m-th

mixture, ()Σ,;µoN is multivariate Gaussian

distribution with a vector of mean values µ and a

covariance matrix Σ.
 All these factors enter into the phpHMM tool by
uploading the file.

Parsing and Storing into Database

 After uploading a text file with hidden Markov
models, their parsing follows and conversion from the
text form into data structures in the memory of the
server. At the same time, some basic integrity checks
of the file are carried out. Then database tables are
created in the MySQL database and they are
populated with relevant data. Using the database is
convenient, inter alia, for easy selection of data by
means of (even complicated) SQL queries. Selection
and processing of data using a database is
significantly faster, comfort and more reliable than
searching in a text file. For our current experiments it

is advantageous to store data in a MEMORY table
type, as this storage allows faster access than the
commonly used MyISAM type.

Glossary of words

 In this step, it can be simply specified all the
words which the recogniser will be able to recognise,
either by typing in the text-box, or by uploading a text
file. The more words are to be recognised, the greater
will be the demands on the recogniser hardware, and
hence the optimisation of the algorithms.

Phonetic Transcription

 In many languages, including Czech, there is the
difference between written and spoken form of
speech. This step automatically creates a phonetic
transcription of words entered in the previous step.
Eg. the Czech word “zpěv” will be rewritten by the
transcription “spjef”.

Selection of Hardware Platform
 The intention of the phpHMM tool is to create
a general tool for a large number of hardware
platforms. Currently, it is possible to choose between
these platforms:

Table 1: Currently available hardware platforms in phpHMM

Processor Architecture Manufacturer

general 32-bit —

OMAP-L137
(DSP + ARM)
300 + 300 MHz

Dual-core:
32-bit DSP
TMS320C674x
+ 32-bit ARM 9

Texas Instruments

TMS320C5505
100 MHz

16-bit DSP
TMS320C55x

Texas Instruments

Stellaris
LM3S8962
80 MHz

32-bit ARM
Cortex M3

Texas Instruments

STM32F103
72 MHz

32-bit ARM
Cortex M3

STMicroelectronics

Particular hardware platforms are briefly described in
the following.

� OMAP-L137 is a 32-bit dual-core heterogeneous
processor, which consists of the ARM 9 core that
enables to run an operating system (eg. Linux), and
TMS320C674x digital signal processor core with
VLIW architecture and with both fixed and floating
point hardware arithmetic. [5]

� TMS320C5505 is a 16-bit digital signal processor
with very low power consumption suitable for
processing audio signals. It also includes an FFT
coprocessor. [6]

� LM3S8962 and STM32F103 are 32-bit
microcontrollers with ARM Cortex M3 core, which
also contains some basic DSP instructions (MAC, bit
shifts, saturation, bit reverse). [7]

Fig. 1: Example of simple hidden Markov model of "a" phoneme in

text form

Selection of Optimisation Methods

 If we want to run speech recogniser on a system
with limited hardware resources, it is necessary to
perform optimisation of computationally intensive
algorithms. In this step, a combination of optimisation
methods can be chosen that we want to be tested. The
optimisation is done at all levels of the design of the
speech recogniser – from the layout of the data
structures up to modifying the algorithms so that they
are faster performed on the chosen hardware platform.

Creating Word Models

 Depending on the optimisation method, models of
the words are created as sequences of states with
which the Viterbi algorithm works. For each word,
the phoneme models are chained into one sequence of
states.

Assembling Source Code and Data Structures

 The main task of the phpHMM tool is to set up the
source code and data structures based on the input
data, specification of which has just been described.
Depending on the type of parametrisation, structure of
the models and the required optimisations, the system
generates the sources of the speech recogniser with
the relevant data.
 The generating of the source code must be before
programmed for each selection of hardware platform
and optimisation. Setting up of source code can be
done using PHP very effectively. The code of the
PHP scripting language can be inserted directly into
the source code in C. PHP as a pre-processor can be
used [8], which has, compared to the standard C
preprocessor, much more possibilities – such as
creating cycles or computing with geometric
functions. For example, Hamming window can be
generated as follows:

<?php $N=512; ?>

const float hamming_ar[<?php echo $N;?>]={

<?php // generating lookup table
for($n=0; $n<$N; $n++){

 $w=0.54 - 0.46 * cos(2*pi()*$n/$N);

 echo "$w,";

}

?>

};

 The generated codes are subsequently compiled by
the appropriate compiler. But it is already beyond the
function of this tool, although in future it may be
possible, after generating the source codes, just run
the compiler and get the program in an executable
format.

III. RESULTS

 Although the phpHMM tool is used to generate the
entire speech recogniser, some examples of using the
generated codes with the result of faster calculations
are discussed.

MFCC Optimisations

 One of the optimisation methods is to calculate the
results in advance, provided that all operands are

known at compile-time. This will avoid repeated
counting still the same results in the recognition
process and it speeds up the calculation.
 This method of so-called “lookup table” we used
to generate the Hamming window coefficients, which
are calculated at the beginning of the signal
parametrisation by the mel-cepstral coefficients
(MFCC), where speech attributes are extracted from
the input signal. The parametrisation method during
recognition process does not change, and therefore the
Hamming window coefficients do not change. The
calculation then reduces to reading the coefficient in
the one-dimensional data field.
 Another part of parametrisation block of signal, is
the calculation of Discrete Cosine Transform (DCT).
Using the standard method of calculating the DCT,
which calculated with goniometrical functions, at the
tested digital signal processor (OMAP-
L137 @ 300MHz, DSP C674x core only) the
calculation time of the parametrisation approximately
55 ms per segment was achieved. With the known
number of DCT coefficients, which are the constants
known at compile-time and during the recognition do
not change, the concrete cosine results are calculated
in advance and stored to the data structure. When
running the DCT algorithm in real-time, then
(paradoxically) the cosine is not calculated, but the
pre-calculated cosine value is used according to the
appropriate arguments. The calculation of the
coefficient is thus reduced to reading its value from
the pre-calculated table. By this optimisation we
reached the calculation time of less than 6 ms, thus
approximately 9-times acceleration.

Output Probability Density Optimisations

 Some of our proposed optimisation methods use
transformed parameters, which arise by converting the
original model parameters. Eg. a modified algorithm
for calculating the output probability function b(o),
which is based on the type of A=A+B×C operation
(dot product, “Multiply and Accumulate”) [3],
requires the recalculation of the original coefficients
by a simple transformation. This transformation is
performed just during the generation of the source
codes. The calculation without optimisations lasted on
the dual-core OMAP-L137 DSP 1477 ms/segment,
while after the application of appropriate
optimisations by recomputing the data structures and
modifying the algorithm, the best time 52 ms/segment
was reached.

Fig. 2: Computation time vs. optimisation methods for MFCC

Viterbi Algorithm Optimisation

 A part of the Viterbi algorithm, which evaluates
the most probable passage through the model, is to
compare of any two adjacent values in the vector of
results of previous operations. Various methods were
tested, but the “Loop Unroll” method proved to be the
fastest in this case on the OMAP-L137 hardware
platform. The code, that was originally performed
repeatedly in the cycle, is broken down into multiple
particular operations without the cycle loop. This will
both reduce the overhead of cycle organisation, but
mainly there will be possibility of greater use of the
hardware architecture. In our case, instead of 32
passes through the cycle, a sequence of 32 individual
operations with directly addressed operands was
generated. This loop unrolling led to the possibility of
use of “MAX2” instruction of C674x platform, which
is a SIMD instruction that simultaneously compares
two pairs of 16-bit operands and returns two results.
The figure below shows the effectiveness of this
optimisation for different number of test vectors
compared with the best time achieved without use of
the loop unroll method.

IV. CONCLUSION

Our intention is to create a miniature speech

recogniser module of Czech language commands,
which would be easily configurable through a web
interface. The first step towards this goal is our

phpHMM software tool that we use for developing
speech recognition algorithms, focusing on
applications of digital signal processors and more
powerful microcontrollers. The advantage of this tool
is easy comparison of optimisation methods, easy to
change parameters and user-friendly graphical
interface. We use it for compiling source code and
data structures tailored to the application. In the future
we plan to expand to other hardware platforms (dsPIC
and MIPS), and automate other steps, including
automatic selection of hardware platforms, depending
on the number of recognised words.

ACKNOWLEDGMENT

The research was supported by grants GAČR

102/08/0707 “Speech Recognition under Real-World
Conditions”, GAČR 102/08/H008 “Analysis and
modelling biomedical and speech signals”, and by
research activity MSM 6840770014 “Perspective
Informative and Communications Technicalities
Research”.

REFERENCES

[1] Young Steve. et al., The HTK Book. cambridge
University Engineering Department, 2006. [online]
URL:
<http://htk.eng.cam.ac.uk/ftp/software/htkbook.pdf.zi
p>.

[2] PHP [online]. 2011 [cit. 2011-03-12]. URL:
<http://www.php.net/>.

[3] MySQL. The world's most popular open source
database [online]. 2011 [cit. 2011-03-12]. URL:
<http://www.mysql.com/>.

[4] KREJČÍ, R.: Optimisation of Computationally
Intensive Part of Speech Recognizer. In 19th Czech-
German Workshop on Speech Processing [CD-ROM].
Praha: Institute of Photonics and Electronics AS CR,
2009, p. 22-26. ISBN 978-80-86269-18-4.

[5] OMAP-L138 Low-Power Applications Processor
[online]. 2011 [cit. 2011-03-12]. URL:
<focus.ti.com/lit/ds/sprs586b/sprs586b.pdf>

[6] TMS320C5505 Fixed-Point Digital Signal
Processor [online]. 2011 [cit. 2011-03-12]. URL:
<focus.ti.com/lit/ds/symlink/tms320c5505.pdf>

[7] Cortex™-M3 Technical Reference Manual
[online]. 2011 [cit. 2011-03-12]. URL:
<http://infocenter.arm.com/help/topic/com.arm.doc.dd
i0337i/DDI0337I_cortexm3_r2p1_trm.pdf>

[8] KREJČÍ, R.: Use PHP preprocessor for
generating source codes in C programming language.
In Králíky 2010. Brno: Brno University of
Technology, 2010, p. 84-87. ISBN 978-80-214-4139-
2.

Fig. 4: Computation time of maximum of neighboring values

Fig. 3: Computation time vs. optimisation methods of b(o) function

