Del Campo Matyáš, Dvořák Lukáš, Punda Václav: Hardwarový klíč k softwaru

Z MAM wiki

Přejít na: navigace, hledání

Obsah

[editovat] Hardwarový klíč k softwaru

[editovat] ZADÁNÍ

Program v PC vygeneruje vždy jinou sekvenci bitů a pošle do AVR. Tajným algoritmem jsou bity přeměněny na jinou sekvenci, která se pošle zpět do PC. Program v PC také zná stejný tajný algoritmus a podle něj ověří, zda je klíč pravý. Lze použít paralelní port, RS232 či USB.

[editovat] Zpracování

Pro komunikaci mezi počítačem a procesorem jsme využili seriový port RS232. Pro šifrování dat jsme využili šifrovací algoritmus AES - Advance Encription Standart. Program je napsán v jazyku C. Spolupracovali Lukáš Dvořák Matyáš Del Campo Václav Punda

[editovat] Prezentace

[editovat] Seriový port RS232

Ze strany procesoru je přenos řešen pomocí USART. Ze strany počítače je komunikace a její parametry nastaveny pomocí knihovny termios.h.

Parametry přenosu RS232:

  • délka slova - 8bit
  • Baud rate - 9600 Bd
  • Parity bit - Ne

Do registru UDRn se nahrávají data k přenosu, nebo přijatá data.

Kontrolní registr sériové komunikace USART0.

  • BIT 7 : RXCn indikuje kompletní příjem dat.
  • BIT 6: TXCn indikuje kompletní odeslání dat.
  • BIT 5: UDREn registr UDRn je prázdný a připraven přijmout data.

[editovat] Šifrovací algoritmus AES

Jedná se o symetrický algoritmus, to znamená že klíč musí být k dispozici jak na straně počítače, tak procesoru. Hlavní výhodou symetrického šifrování je, že je obecně velmi rychlé a dá se použít pro šifrování velkého objemu dat. Zásadní nevýhodou (pro řadu aplikací) je ale samotné použití sdíleného klíče: ten kdo data zašifroval je umí i dešifrovat a komunikují-li spolu dvě strany, je nutné, aby si klíč bezpečně předaly důvěrnou cestou. Bezpečnost šifry také závisí na kvalitě použitého klíče, musí být dostatečně komplexní a dostatečně náhodný, jinak je šifra snadno prolomitelná. Algoritmus je aplikován na data s pevně danou délkou - v tomto konkrétním případě 128 bitů. Vstupní data je datové pole o velikosti 16-ti prvků, každý prvek má velikost 8 bitů.

[editovat] Popis šifrování

Vstupní data a klíč v maticovém tvaru 4x4.

Postup šifrování

V prním kroku se maticově sečtou vstupní data a klíč. Takto upravená data se několikrát cyklicky upraví. Celkem je provedeno 10 cyklů při posledním oběhu je vynechána operace MixCulums.

Každý cyklus se skládá ze 4 úprav. Pro každý cyklus nastane změna klíče, která je popsána níže.

SubBytes :Hodnoty upravené matice dat se postupně nahradí pomocí matice S-Box, jak

ShiftRows : V tomto kroce se provede rotace řádků matice. První řádek se nerotuje, druhý se rotuje o jedno místo apod.

MixColumns : Tato záměna je provedena vynásobením předem danou maticí.

V tomto kroku se sečtou data s klíčem.

V této fázi vytváříme z předchozího klíče klíč následují.

[editovat] Dešifrování

Při dešifrování se využívá vlastnosti linearity některých operací. Požívají se operace jako : InvMixColumns , InvShiftRows a InvSubByte.

[editovat] Kód

[editovat] PC

//
//  main.c
//  Program:
//Program posílá pres RS232 kod, ten se zasifruje v procesoru a prijde zpet, potom se data rozsifrují. Pouziva se AES kodovani.
//Dvorak Lukas, Punda Vaclav, Del Campo Matyas
//ZDROJE:
//dekodovaní:http://kprox1.blogspot.cz/2012/12/c-code-of-128-bit-decryption-algorithm.html
//seriová komunikace RS232: Bakalářská práce Del Campo Matyáš 
#include <stdio.h>   /* Standard input/output definitions */
#include <string.h>  /* String function definitions */
#include <unistd.h>  /* UNIX standard function definitions */
#include <fcntl.h>   /* File control definitions */
#include <errno.h>   /* Error number definitions */
#include <termios.h> /* POSIX terminal control definitions */
#include <stdlib.h>
#include <conio.h>

// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4

int main(void){
    int Nr=0;
    int Nk=0;
    unsigned char out2[16],state[4][4];
    unsigned char RoundKey[240];
    unsigned char Key[32];    
    Nr=128;
    Nk = Nr / 32;
    Nr = Nk + 6;
    
    unsigned char temp[16] = {'0','1','2','3','4','5','6','7','8','9','0','1','2','3','4','5'};
    for(int i=0;i<Nk*4;i++)
    {
        Key[i]=temp[i];
    }
    char rbuffer[300];
    unsigned char out[16];
    memset(rbuffer,0,sizeof(rbuffer));
    //inicializace portu stabilně nastvena adresa dev/ttyUSB3
    int port =open("/dev/ttyUSB3", O_RDWR | O_NDELAY);//open port
    fcntl(port, F_SETFL, O_NONBLOCK);
    struct termios options;
    tcgetattr(port,&options);
    options.c_cflag &= ~CSIZE;
    options.c_cflag |= CS8;//8 bits
    cfsetispeed(&options, B9600);//set up baud speed
    cfsetospeed(&options, B9600);
    options.c_cflag |= (CLOCAL | CREAD);
    options.c_cflag |= CS8;    /* Select 8 data bits */
    tcsetattr(port, TCSANOW, &options);
    tcflush(port,TCIOFLUSH);

    for(int i=0;i<16;i++){
        srand(time(NULL));
        out[i]=rand()%9;
    }
    write(port,out,8);
    readf(port,&rbuffer[0],sizeof(rbuffer));
    //decryption
    KeyExpansion();
    InvCipher();
    printf("%",out2);
    return 0;
}

void readf(int port, char *rbuffer, int sz){
    char mbuffer [300];
    int i;
    char *rbuffptr;
    memset(mbuffer,0,sizeof(mbuffer));//flush buffer
    int nbytesr;
    rbuffptr=mbuffer;
    while((nbytesr=read(port,mbuffer,mbuffer+sizeof(mbuffer)-rbuffptr-1))>0){
        rbuffptr+=nbytesr;
    }
    for(i=0;i<sz;i++){
        rbuffer[i]=mbuffer[i];
    }
}
//prevzato z :...

int getSBoxInvert(int num)
{
    int rsbox[256] =
    { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
        , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
        , 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
        , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
        , 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
        , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
        , 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
        , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
        , 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
        , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
        , 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
        , 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
        , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
        , 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
        , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
        , 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
    
    return rsbox[num];
}

int getSBoxValue(int num)
{
    int sbox[256] =   {
        //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
        0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
        0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
        0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
        0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
        0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
        0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
        0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
        0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
        0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
    return sbox[num];
}

// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
int Rcon[255] = {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
void KeyExpansion()
{
    int i,j;
    unsigned char temp[4],k;
    
    // The first round key is the key itself.
    for(i=0;i<Nk;i++)
    {
        RoundKey[i*4]=Key[i*4];
        RoundKey[i*4+1]=Key[i*4+1];
        RoundKey[i*4+2]=Key[i*4+2];
        RoundKey[i*4+3]=Key[i*4+3];
    }
    
    // All other round keys are found from the previous round keys.
    while (i < (Nb * (Nr+1)))
    {
        for(j=0;j<4;j++)
        {
            temp[j]=RoundKey[(i-1) * 4 + j];
        }
        if (i % Nk == 0)
        {
            // This function rotates the 4 bytes in a word to the left once.
            // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
            
            // Function RotWord()
            {
                k = temp[0];
                temp[0] = temp[1];
                temp[1] = temp[2];
                temp[2] = temp[3];
                temp[3] = k;
            }
            
            // SubWord() is a function that takes a four-byte input word and
            // applies the S-box to each of the four bytes to produce an output word.
            
            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }
            
            temp[0] =  temp[0] ^ Rcon[i/Nk];
        }
        else if (Nk > 6 && i % Nk == 4)
        {
            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }
        }
        RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
        RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
        RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
        RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
        i++;
    }
}

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round)
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
        }
    }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void InvSubBytes()
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[i][j] = getSBoxInvert(state[i][j]);
            
        }
    }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void InvShiftRows()
{
    unsigned char temp;
    
    // Rotate first row 1 columns to right
    temp=state[1][3];
    state[1][3]=state[1][2];
    state[1][2]=state[1][1];
    state[1][1]=state[1][0];
    state[1][0]=temp;
    
    // Rotate second row 2 columns to right
    temp=state[2][0];
    state[2][0]=state[2][2];
    state[2][2]=temp;
    
    temp=state[2][1];
    state[2][1]=state[2][3];
    state[2][3]=temp;
    
    // Rotate third row 3 columns to right
    temp=state[3][0];
    state[3][0]=state[3][1];
    state[3][1]=state[3][2];
    state[3][2]=state[3][3];
    state[3][3]=temp;
}

// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// Multiplty is a macro used to multiply numbers in the field GF(2^8)
#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))

// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
void InvMixColumns()
{
    int i;
    unsigned char a,b,c,d;
    for(i=0;i<4;i++)
    {
        
        a = state[0][i];
        b = state[1][i];
        c = state[2][i];
        d = state[3][i];
        
        
        state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
        state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
        state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
        state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
    }
}

// InvCipher is the main function that decrypts the CipherText.
void InvCipher()
{
    int i,j,round=0;
    
    //Copy the input CipherText to state array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] = rbuffer[i*4 + j];
        }
    }
    
    // Add the First round key to the state before starting the rounds.
    AddRoundKey(Nr);
    
    // There will be Nr rounds.
    // The first Nr-1 rounds are identical.
    // These Nr-1 rounds are executed in the loop below.
    for(round=Nr-1;round>0;round--)
    {
        InvShiftRows();
        InvSubBytes();
        AddRoundKey(round);
        InvMixColumns();
    }
    
    // The last round is given below.
    // The MixColumns function is not here in the last round.
    InvShiftRows();
    InvSubBytes();
    AddRoundKey(0);
    
    // The decryption process is over.
    // Copy the state array to output array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            out2[i*4+j]=state[j][i];
        }
    }
}

[editovat] Procesor

//
//  main.c
//  semest
//ZDROJE:
//http://kprox1.blogspot.cz/2012/12/c-code-of-128-bit-encryption-algorithm.html
//  Created by Lukas Dvorak, Matyas Del Campo, Vaclav Punda on 5/13/13.
//  Copyright (c) 2013 Lukas Dvorak. All rights reserved.
//

#include <avr/iom168.h>
#include <conio.h>
#include <stdio.h>


#define FOSC 1843200 // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1
#define Nb 4
int Nr=0;
int Nk=0;
unsigned char in[16], out[16], state[4][4];
unsigned char RoundKey[240];
unsigned char Key[32];


//hl. program
void main( void )
{
    USART_Init(MYUBRR);
    
    char data_L = USART_rx();    char data_H = USART_rx();
    char out_L[8];
    char out_H[8];
    Nr=128;
    
    Nk = Nr / 32;
    Nr = Nk + 6;
    
    unsigned char temp[16] = {'0','1','2','3','4','5','6','7','8','9','0','1','2','3','4','5'};
    for(int i=0;i<Nk*4;i++)
    {
        Key[i]=temp[i];
    }
    

    for (int i=0;i<16;i++){
        in[i] = USART_rx();
        }
    KeyExpansion();
    Cipher();
    for (int i=0;i<16;i++){
        if i<8 out_L[i]=out[i];
        else  out_H[i-8]=out[i];
            }
    USART_tx(out_L);
    USART_tx(out_H);
}

// funkce

void USART_Init( unsigned int ubrr) {
    /*Set baud rate */
    UBRR0H = (unsigned char)(ubrr>>8); UBRR0L = (unsigned char)ubrr;
    Enable receiver and transmitter */ UCSR0B = (1<<RXEN0)|(1<<TXEN0);
    /* Set frame format: 8data, 2stop bit */ UCSR0C = (1<<USBS0)|(3<<UCSZ00);
}

void USART_tx (unsigned char out){
    while(!(UCSRnA & (1<<UDREn)));//čekání na prázdný buffer
    UDRn = out; //posílání dat
}

void USART_rx (void){
    while(!(UCSRnA & (1<<RXCn)));
    return UDRn
}

int getSBoxValue(int num)

{
    int sbox[256] =   {
        //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
        0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
        0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
        0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
        0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
        0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
        0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
        0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
        0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
        0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F
    return sbox[num];
}

int Rcon[255] = {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };


void KeyExpansion()
{
    int i,j;
    unsigned char temp[4],k;
    
    // The first round key is the key itself.
    for(i=0;i<Nk;i++)
    {
        RoundKey[i*4]=Key[i*4];
        RoundKey[i*4+1]=Key[i*4+1];
        RoundKey[i*4+2]=Key[i*4+2];
        RoundKey[i*4+3]=Key[i*4+3];
    }
    
    
    while (i < (Nb * (Nr+1)))
    {
        for(j=0;j<4;j++)
        {
            temp[j]=RoundKey[(i-1) * 4 + j];
        }
        if (i % Nk == 0)
        {
            // This function rotates the 4 bytes in a word to the left once.
            // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
            
            // Function RotWord()
            {
                k = temp[0];
                temp[0] = temp[1];
                temp[1] = temp[2];
                temp[2] = temp[3];
                temp[3] = k;
            }
            
            // SubWord() is a function that takes a four-byte input word and
            // applies the S-box to each of the four bytes to produce an output word.
            
            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }
            
            temp[0] =  temp[0] ^ Rcon[i/Nk];
        }
        else if (Nk > 6 && i % Nk == 4)
        {
            // Function Subword()
            {
                temp[0]=getSBoxValue(temp[0]);
                temp[1]=getSBoxValue(temp[1]);
                temp[2]=getSBoxValue(temp[2]);
                temp[3]=getSBoxValue(temp[3]);
            }
        }
        RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
        RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
        RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
        RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
        i++;
    }
}

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round)
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
        }
    }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void SubBytes()
{
    int i,j;
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[i][j] = getSBoxValue(state[i][j]);
            
        }
    }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void ShiftRows()
{
    unsigned char temp;
    
    // Rotate first row 1 columns to left
    temp=state[1][0];
    state[1][0]=state[1][1];
    state[1][1]=state[1][2];
    state[1][2]=state[1][3];
    state[1][3]=temp;
    
    // Rotate second row 2 columns to left
    temp=state[2][0];
    state[2][0]=state[2][2];
    state[2][2]=temp;
    
    temp=state[2][1];
    state[2][1]=state[2][3];
    state[2][3]=temp;
    
    // Rotate third row 3 columns to left
    temp=state[3][0];
    state[3][0]=state[3][3];
    state[3][3]=state[3][2];
    state[3][2]=state[3][1];
    state[3][1]=temp;
}

// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// MixColumns function mixes the columns of the state matrix
void MixColumns()
{
    int i;
    unsigned char Tmp,Tm,t;
    for(i=0;i<4;i++)
    {
        t=state[0][i];
        Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;
        Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;
        Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;
        Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;
        Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;
    }
}

// Cipher is the main function that encrypts the PlainText.
void Cipher()
{
    int i,j,round=0;
    
    //Copy the input PlainText to state array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            state[j][i] = in[i*4 + j];
        }
    }
    
    // Add the First round key to the state before starting the rounds.
    AddRoundKey(0);
    
    // There will be Nr rounds.
    // The first Nr-1 rounds are identical.
    // These Nr-1 rounds are executed in the loop below.
    for(round=1;round<Nr;round++)
    {
        SubBytes();
        ShiftRows();
        MixColumns();
        AddRoundKey(round);
    }
    
    // The last round is given below.
    // The MixColumns function is not here in the last round.
    SubBytes();
    ShiftRows();
    AddRoundKey(Nr);
    
    // The encryption process is over.
    // Copy the state array to output array.
    for(i=0;i<4;i++)
    {
        for(j=0;j<4;j++)
        {
            out[i*4+j]=state[j][i];
        }
    }
}





//udělat_ vyřešit pro poslání 16 bitů...toto je zatím 8;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


/* komenty
 void tr(unsigned char* out){
 unsigned char i;
 for(i=0;í<8;i++){
 if (out & (1<<8))
 portd |=1
 else
 portd &= ~1
 
 out <<=1
 out &= (portd&2)>>1
 
 }
 }
 */

[editovat] Zdroje informací

Osobní nástroje