Product Brief

24-bit Digital Signal Processor

The DSP56004 is a high-performance, programmable Digital Signal Processor (DSP) suitable for a variety of cost-sensitive audio functions, such as Dolby Pro Logic decoding and Lucasfilm Home THX® enhancements. Software for these functions is available to licensees from Motorola for integration with user-developed features, such as digital equalization and sound field processing in products like audio/video receivers, televisions, and automotive sound systems. The DSP56004 Symphony™ is an MPU-style general purpose DSP, composed of an efficient 24-bit digital signal processor core, program and data memories, various peripherals optimized for audio, and support circuitry. As illustrated in Figure 1, the 56000-Family-compatible DSP core is fed by program memory, two independent data RAMs, and two data ROMs with sine and logarithm tables in the DSP56004, a Serial Audio Interface, Serial Host Interface, External Memory Interface, dedicated I/O lines, on-chip Phase-Locked Loop (PLL), and On-Chip Emulation (OnCE™) port.

Figure 1 DSP56004 Block Diagram

† On the DSP56004ROM, this Program Memory is 2560 · 24 ROM plus 256 · 24 RAM with the 64 · 24 boot ROM.

Motorola reserves the right to change or discontinue this product without notice.
DSP56004 Features

Digital Signal Processing Core

- Efficient, object code compatible, 24-bit 56000-Family DSP engine
 - Up to 33 Million Instructions Per Second (MIPS) – 30.3 ns instruction cycle at 66 MHz
 - Up to 180 Million Operations Per Second (MOPS) at 66 MHz
 - Highly parallel instruction set with unique DSP addressing modes
 - Two 56-bit accumulators including extension byte
 - Parallel 24 × 24-bit multiply-accumulate in 1 instruction cycle (2 clock cycles)
 - Double precision 48 × 48-bit multiply with 96-bit result in 6 instruction cycles
 - 56-bit addition/subtraction in 1 instruction cycle
 - Fractional and integer arithmetic with support for multiprecision arithmetic
 - Hardware support for block-floating point Fast Fourier Transforms (FFT)
 - Hardware nested DO loops
 - Zero-overhead fast interrupts (2 instruction cycles)
 - Four 24-bit internal data buses and three 16-bit internal address buses for simultaneous accesses to one program and two data memories

Memory

Table 1 lists the memory configurations of the DSP56004.

- On-chip Harvard architecture permitting simultaneous accesses to program and two data memories
- 512 × 24-bit on-chip program RAM and 64 × 24-bit bootstrap ROM
 - On the DSP56004ROM this program memory is replaced with 2560 × 24-bit on-chip program ROM*, 256 × 24-bit on-chip program RAM, and the 64 × 24-bit bootstrap ROM
- Two 256 × 24-bit on-chip data RAMs
- Two 256 × 24-bit on-chip data ROMs containing sine and logarithm tables
 - On the DSP56004ROM these data ROMs contain developer-provided data
- Bootstrap loading from Serial Host Interface or External Memory Interface
- Proprietary Bootstrap for Securing Program ROM contents

<table>
<thead>
<tr>
<th>Part Type</th>
<th>Program X Data</th>
<th>X Data</th>
<th>Y Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROM</td>
<td>RAM</td>
<td>ROM</td>
</tr>
<tr>
<td>DSP56004</td>
<td>none</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>DSP56004ROM</td>
<td>2560*</td>
<td>256</td>
<td>256*</td>
</tr>
</tbody>
</table>

Word width is 24 bits.

* These ROMs may be factory-programmed with data/program provided by the application developer.
Peripheral and Support Circuits

- Serial Audio Interface (SAI) includes 2 receivers and 3 transmitters, master or slave capability, and implementation of I^2S, Sony, and Matshushita audio protocols; two sets of SAI interrupt vectors
- Serial Host Interface (SHI) features single master capability, 10-word receive FIFO, and support for 8-, 16- and 24-bit words
- External Memory Interface (EMI), implemented as a peripheral supporting:
 — Page-mode DRAMs (one or two chips): 64k × 4, 256k × 4, and 4M × 4 bits
 — SRAMs (one to four): 256k × 8 bits
 — Data bus may be 4 or 8 bits wide
 — Data words may be 8, 12, 16, 20, or 24 bits wide
- Four dedicated, independent, programmable General Purpose I/O (GPIO) lines
- On-chip peripheral registers memory mapped in data memory space
- Three external interrupt request pins
- On-Chip Emulation (OnCE™) port for unobtrusive, processor speed-independent debugging
- Software-programmable, Phase Locked Loop-based (PLL) frequency synthesizer for the core clock
- Power-saving Wait and Stop modes
- Fully static, HCMOS design for operating frequencies from 40, 50, and 66 MHz down to DC
- 80-pin plastic Quad Flat Pack surface-mount package; 14 × 14 × 2.45 mm; 0.65 mm lead pitch
- Completely pin compatible with the DSP56007 for easy upgrades
- 5 V power supply

The DSP56004ROM is a ROM-based version of the RAM-based DSP56004. The DSP56007/L007 is a pin-compatible version of the DSP56004 with a different memory configuration.
Documentation

The three documents listed in Table 2 are required for a complete description of the DSP56004 and are necessary to properly design with the part. Documentation is available from a local Motorola distributor, a Motorola semiconductor sales office, or a Motorola Literature Distribution Center listed below.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Additional DSP56004 Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Name</td>
<td>Description</td>
</tr>
<tr>
<td>DSP56000 Family Manual</td>
<td>Detailed description of the 56000-family architecture and the 24-bit core processor and instruction set</td>
</tr>
<tr>
<td>DSP56004/007 User's Manual</td>
<td>Detailed description of memory, peripherals, and interfaces</td>
</tr>
<tr>
<td>DSP56004/007 Data Sheet</td>
<td>Electrical and timing specifications, and pin and package descriptions</td>
</tr>
</tbody>
</table>

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typical”, must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. All product and brand names appearing herein are trademarks or registered trademarks of their respective holders.

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona USA 85036.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbor Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

OnCE and Symphony are trademarks of Motorola, Inc.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.