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ABSTRACT

Basic principles of various adaptive algorithms for
speech detection in a noise and their behaviour un-
der real car noise conditions are described. Energy,
spectral, cepstral, and coherence detectors are com-
pared. All these algorithms are suitable for real time
implementation with one or two microphones. High
probability of correct speech/pause detection can be
obtained even if signal to noise ratio is low and noises
are highly nonstationary.

1. INTRODUCTION

Speech/pause detectors are the limiting parts of sys-
tems for the suppression of additive noises in speech,
because the quality of the detector determines the
performance of the whole noise suppression system. If
the speech/pause decision is not correct then speech
echoes and residual noises are present in enhanced
speech. Information about speech activity is need not
only for an estimation of background noise character-
istics but also for time delay compensation of signals
picked up by microphone array.

2. SPEECH/PAUSE DETECTION

Basic steps of speech detection can be formulated as
follows:

e signal is divided into overlap segments

e a vector of chosen parameters is computed for
signal segments

e a proper distance measure is used for evaluation
of a difference between two segments

— if the distance between given segment and a
preset threshold is evaluated then we obtain
an integral algorithm which is able to detect
the whole interval of speech activity

— if the distance between two neighbouring
segments is evaluated we obtain a differen-
tial algorithm which can detect borders of
speech activity only

An integral algorithms require to preset a threshold,
but this setting suffers from the subjectivity which is
not the case of a differential algorithms. On the other
hand the output from differential algorithms have to

be postprocessed (e.g. integrated) to give the whole
intervals of speech activity. This postprocessing in-
troduces some errors and degrades the performance
of differential algorithms.

2.1. Chosen parameters

The choice of vector parameters and the distance
measure determine the type of detector. Energy,
spectral density, cepstrum and coherence function
were used. We studied following parameters:

Energy - cémputed either in the time or frequency
domain, i.e.

E=Y %= 2_17;/5(61‘@)61@, (1)

were S(e’®) is energy spectral density (ESD) of a
signal z[n] and O is normalized frequency in radians.

Energy spectral density - S(e?®) - given using the
FFT or AR analysis.

Cepstral coefficients - c[n] - determined by Laurent
expansion of ESD

InS(e7®) = E cke IkC. (2)
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Energy detector can be thought as the special case
of cepstral detector because ¢¢ contains information
about signal energy.

Coherence function

. Sz ej@ 2
72(316) = —SJ(eJ'!é()Sy ()elje)’ (3)

where |S;,(€7®)|? is cross spectrum of two input sig-
nals z[n] and y[n], S;(¢’®) and S, (e’®) are ESD of
z[n) and y[n] respectively. Coherence function ap-
proaches to 1 when z[n] and y[n] are clean real speech
signals. On the other hand coherence function falls to
0 when z[n] and y[n] are uncorrelated noises. Because
most of car noises seems to be uncorrelated coherence
function contains some information about speech ac-
tivity. Disadvantage is that two microphones are re-
quired.



2.2. Distance measures

We used two types of distance measures:
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where ©,,;, and ©,,,, Were set experimentally. This
distance is L1 norm of spectral distance between two
signal segments. If S’(e’®) is ESD of a background
noise then eq.(4) describes integral spectral detector,
if S'(e’®) is ESD of a previous segment then eq.(4)
leads to the differential spectral detector.
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This is L2 norm of the difference between two cepstral
vectors. If ¢} are cepstral coefficients of a background
noise then eq.(5) leads to an integral cepstral detec-
tor. If cx = cx[n] and ¢}, = cx[n — 1] are cepstral coef-
ficients of two adjacent signal segments at the time n
and n— 1 respectively, then the eq.(5) can be used for
the construction of the differential cepstral detector.

2.3. Thresholds updating
Threshold updating can be described as follows:

e Let V[n] is the vector of length M of specified
parameter, i.e. M = 1 for energy, M is number
of cepstral coefficients, or M is segment length
for the case of S(e7®) or v(e?®).

e Then smoothed version Vg[l] of V[I] is computed
in nonspeech activity

Vsli+1]=pVsll]+(1-p)VI]  (6)

Parameter p corresponds the equivalent window
length of 1/p - it means 1/p segments because
V[] is computed for one signal segment at time
1. This smoothed process is expected to be short-
time.

o chosen distance dist[n] between V[I] and Vs[l] is
evaluated using equations (4), (5), or (8).

¢ mean value and standard deviation of computed
distance dist is estimated using exponential aver-
aging with the equivalent window length of 1/q.
This averaging is expected to be long-time.

e threshold Thr is then established as
Thr = mean (dist) + « - std (dist) (M
where o was found to be in the range from 1 to

2 according the signal to noise ratio (SNR) and
type of detector.

2.4. Detector specifications
2.4.1. Energy detector

The value E from eq.(1) is compared with the thresh-
old E; defined as E; = 1.5 E, where Ej is the back-
ground noise energy updated according eq.(6) in non-
speech activity, i.e. while E < E;. The threshold
could be defined according eq.(7) too.

2.4.2. Spectral integral detectors

This detector using either measure dg (4) with adap-
tive threshold according eq.(7) or the statistics {1]
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which has a standardized normal distribution, n;
and ny stand for degrees of freedom of S(e/®) and
S'(e7®) respectively, and N is the number of fre-
quency bands. Equation (8) provides a basic to test
the hypothesis that S(e/®) = S'(e/®). The region of
acceptance for the hypothesis test is

[—2a/2 £ D < zq/2], (9)

where o is the level of significance for the test and
Za/2 18 100§ percentage point. Our goal was to find
an optimal values nj, ns, and Ng. If eq.(8) is realized
by the FFT of size N then maximum value of Ng =
N/2. '

2.4.3. Cepstral integral detectors

The suggestions of these algorithms were motivated
by (2], [3], [4], [3], [7], [10], [11]. Eq.(5) is approxi-
mated in this case by

P
Ac= 4.3429&00 —cp)2+2 Z(ck —c)?. (10)
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This algorithm were used in one step or two step ver-
sion. One step algorithm computes with Ac only
while two step one works with smoothed distance
Acy,.

2.4.4. Cepstral differential detectors

This detector computes a first order differential log
spectrum
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where ci(t) stands for k—th cepstral coefficients at
time t. This equation can not be used for the time-
sampled cepstral sequence. That is why we studied
various approximations of the time derivation. One
of these possibilities is backward difference, i.e.

_ ack (t + ‘r)

§(r) = o lz:ozck[n]—ck[n—l], (12)



which is inherently noisy. It is possible to use sym-
metric difference which represents reasonable choice
between complexity and performance or polynomial
approzimation which gives the best detection perfor-
mance for lower orders. The speech detection was
performed using a modified differential spectral dis-
tance. Following eq.(13) is the special case of eq.(5)

for 5,9) = ck[n] — ck[n — 1] = ¢k — ¢}.
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2.4.5. Coherence integral detector

This part of study was motivated by paper of [6].
This detector uses two input signals z[n] and y[n]
to estimate coherence function in eq.(3). Then this
function is integrated

emu:
M, = / 12(e19)dO. (14)
emin

Parameter M. is compared to:

o fixed threshold M, which value was varied in in-
terval (0.2,0.4)

o threshold M;, updated in nonspeech activity es-
tablished according eq.(7)

Bounds ©5, and Opuasz together with segments
length determines the detector behaviour.

3. REALIZATION

All algorithms were developed under constrained that
the length of segments has to be 256 samples with
50% overlapping and sampling frequency 11025Hz.
Energy and cepstral algorithms fully satisfy these re-
quirements.

Smoothing process of spectral and coherence detec-
tor requiring high number of degrees of freedom was
based on Welch method. The FFT size was chosen
32 for spectral detectors. Other parameters of statis-
tical spectral detector were set ny = 70, ne =~ 90, and
© =~ 12 with corresponding unnormalized frequency
band (350, 3800) Hz'.

Experiments confirmed that the performance of
coherence detector is poor for segment length 256.
That’s why segments of 1024 or 2048 samples were
used. In this case the FFT size is 128. The unnor-
malized frequency band (400,4000) Hz was used for
presented coherence algorithms?.

INon-linear frequency warping was used for spectral and
coherence detectors too but the results were similar to linear
frequency scale [8].

2AR based coherence detector was developed but results
in the speech/pause resolution were worse than results of FFT
coherence detector. Moreover this type of detector require long
signal segments and very high order of AR model and it is more
sensitive to noise than FFT based one.

Detector | P(A/s) | P(A/N) | P(A) [ P(B)
I.HDET | 0.8540 | 0.5120 | 0.6490 | 0.4310
0.0070 0.0170 0.0040 | 0.0080

2.CEP1 | 0.9700 | 0.6650 | 0.8010 | 0.6420
0.0020 0.0200 | 0.0090 | 0.0160

3.CEP2 0.9620 0.7670 | 0.8630 | 0.7340

0.0020 0.0210 0.0070 | 0.0160

4.DF1 0.9660 0.6970 | 0.8280 | 0.6710
0.0020 0.0130 0.0060 | 0.0110

5.PSD 0.8420 [ 0.6640 | 0.7710 [ 0.5600
0.0140 | 0.0150 | 0.0090 | 0.0190

6.PSDA ['0.9160 | 0.5540 | 0.6670 | 0.5060
0.0180 | 0.0270 | 0.0270 | 0.0280

7.COHA | 0.8520 | 0.6310 | 0.7470 | 0.5370
0.0090 | 0.0180 | 0.0090 | 0.0170

‘8.COHF | 0.9810 | 0.4760 [ 0.5870 | 0.4670
0.0010 | 0.0180 | 0.0160 | 0.0170

Tab. 1: Average values and standard deviations of
classification parameters for experiments with se-
lected detectors and with SNR = 0dB.

1.HDET - Harrison energy detector,

2.CEP1 - One step integral cepstral detector,
3.CEP2 - Two step integral cepstral detector,

4.DF1 - Differencial cepstral detector (backward dif.),
5.PSD - Statistical spectral detector,

6.PSDA - Spectral detector with adaptive threshold,
7.COHA - Coherence detector, adaptive threshold,
8.COHF - Coherence detector, fixed threshold.

4. CLASSIFICATION

We used following objective criteria (based on the
computation of correct detection rates) for the com-
parison of different algorithms:

- correct speech detection rate - P(A/S)

- correct nonspeech detection rate - P(A/N).
Another possibility is the using of global criteria:

- correct detection rate - P(A)

- speech/nonspeech resolution factor - P(B)
defined as

P(A) = P(A/S)P(S) + P(A/N)P(N),

P(B) = P(A/S)P(A/N)
where P(S) and P(N) are rates of speech and pauses
in the processed signal. While first and second crite-
ria show how a detector determines speech or noise
activity only, third and fourth criteria show the global
detector performance.

5. EXPERIMENTS

Detectors were tested under different noisy conditions
- SNR = 0 + 20dB. Speech signals were manually
labeled and mixed with real car noise. A rough infor-
mation about detectors behaviour is given by mean
values and standard deviations of all realized experi-
ments for each criterion described in preceeding text.
Tab.1 and fig.1 show some of these results. More de-
tailes of achieved results will be presented.

6. CONCLUSIONS

All described detectors are suitable for real time im-
plementation. We focused to AR-based cepstral de-
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Fig. 1: SNR dependance of classification parameters for selected detectors.(Number of detectors corespond to

the marks in the presented table.)

tectors only because the results are better than for
FFT-based ones because of following reasons:
- lower noise fluctuation in AR-based cepstra,
- greater sensitivity of AR-based cepstra to speech
activity,
- threshold can be set to lower value because more
smoothed estimations of background noise is ob-

tained.
Because the segment length of coherence detector is

greater than segment length of other types of detec-
tors, coherence detector gives global long-term infor-
mation about speech activity while cepstral detectors
give detail description of speech activity. Presented
coherence detectors are the simplest versions of this
type of algorithms and other modifications are under
development.

The best results gives two steps integral cepstral
detector with nonlinear smoothing described in [9)].
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